
10 Months with 
Supermaven in Neovim

Karl Matthias
Member of Technical Staff - Mozi



Nearly 30 years in tech, 10 startups

ex-New Relic, ex-Nitro, ex-InVision, 
ex-Community.com (etc)

Co-Wrote Docker: Up and Running from 
O’Reilly Media (3 editions)

Working remote since 2018

In Ireland since April 2016

Coding every day

Who Am I



What I’ve learned from daily use

Practical use of the tool

Why I made the choices I did

Reflects previous 10 months — things are 
moving fast

Mostly about how to use it, not how it works

Largely about using AI auto-complete to full 
advantage

This Talk



I code a lot of the day, ~5 hours a lot of days

More time to focus on big ideas and 
important stuff (like code structure, test 
strategy)

I am less fatigued

Less tedium

Replaces some other tools

Why I Use AI



Used for different things

Work together

Use two different models

Have two different contexts (but should 
they?)

Auto-Complete vs Chat



Where you spend 95% of your time

Must be Fast!

Must be (fairly) correct!

No need to supply reasoning

Should primarily be good at edits

Knows your codebase! (with enough 
context)

Auto-Completion



Great for starting things, large chunks 
of code

For reference

Maybe for refactors—but not great yet 
IME

Chat



Neovim — Editor

Supermaven — Auto-completion model 
and editor integration

ChatGPT — Chat

My Dev Tools Stack



This is a pairing session! 

Tell it what you want to do

Get the right context!

Think about what it should know

Bigger context is better here

Supermaven vs Copilot — 1 million 
tokens vs 8192

Pairing with AI



Big enough codebase gives more 
context, better results (to a point)

Intentionally open files in the editor 
from outside the repo that give 
context

Use a well-known language with lots 
of code examples. e.g. Go, Ruby vs 
Crystal

Load any outside schemas if you 
have them (DB, protobuf, etc)

Pairing with AI



Demo



Make sure it has the right context!

Comments to generate code

Test description to generate tests

Partially edit a line as much as you 
can remember. Re-edit to let it fix it.

Make the same change back-to-back 
for best context.

Tips Summary



Blog: relistan.com

Mastodon: @relistan@k.matthias.org

LinkedIn: 
https://www.linkedin.com/in/karlmatthias/

Book: Docker: Up and Running (3rd ed)

Mozi: https://mozi.app

Where to Find Me


